Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615320

RESUMO

Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.


Assuntos
Neoplasias da Mama , Creatina Quinase Mitocondrial , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Creatina Quinase , Creatina Quinase Mitocondrial/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo
2.
Adv Sci (Weinh) ; 10(35): e2304343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908150

RESUMO

Here, the authors report that co-crystallization of fluorophores with matrix-assisted laser desorption/ionization (MALDI) imaging matrices significantly enhances fluorophore brightness up to 79-fold, enabling the amplification of innate tissue autofluorescence. This discovery facilitates FluoMALDI, the imaging of the same biological sample by both fluorescence microscopy and MALDI imaging. The approach combines the high spatial resolution and specific labeling capabilities of fluorescence microscopy with the inherently multiplexed, versatile imaging capabilities of MALDI imaging. This new paradigm simplifies registration by avoiding physical changes between fluorescence and MALDI imaging, allowing to image the exact same cells in tissues with both modalities. Matrix-fluorophore co-crystallization also facilitates applications with insufficient fluorescence brightness. The authors demonstrate  feasibility of FluoMALDI imaging with endogenous and exogenous fluorophores and autofluorescence-based FluoMALDI of brain and kidney tissue sections. FluoMALDI will advance structural-functional microscopic imaging in cell biology, biomedicine, and pathology.


Assuntos
Encéfalo , Rim , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cristalização , Microscopia de Fluorescência , Rim/diagnóstico por imagem
3.
Biosens Bioelectron ; 239: 115597, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597501

RESUMO

Multimodal tissue imaging techniques that integrate two complementary modalities are powerful discovery tools for unraveling biological processes and identifying biomarkers of disease. Combining Raman spectroscopic imaging (RSI) and matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain fused images with the advantages of both modalities has the potential of providing spatially resolved, sensitive, specific biomolecular information, but has so far involved two separate sample preparations, or even consecutive tissue sections for RSI and MALDI MSI, resulting in images with inherent disparities. We have developed RaMALDI, a streamlined, integrated, multimodal imaging workflow of RSI and MALDI MSI, performed on a single tissue section with one sample preparation protocol. We show that RaMALDI imaging of various tissues effectively integrates molecular information acquired from both RSI and MALDI MSI of the same sample, which will drive discoveries in cell biology, biomedicine, and pathology, and advance tissue diagnostics.


Assuntos
Técnicas Biossensoriais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Imagem Multimodal , Sorogrupo , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA